央视网|中国网络电视台|网站地图
客服设为首页
登录

更多 精彩视频排行

网友评分最高


首播

重播

  据物理学家组织网8月21日(北京时间)报道,美国麻省理工学院的研究人员利用电子束光刻技术和剥离过程开发出无缺陷半导体纳米晶体薄膜。这是一种很有前途的新材料,可广泛应用并开辟潜在的重点研究领域。相关报告发表在近期出版的《纳米快报》杂志网络版上。

  半导体纳米晶体的大小决定了它们的电子和光学性质。但想通过控制纳米晶体在表面上的布置,形成具有均匀结构的薄膜却十分困难。典型的纳米晶体薄膜一般都有能限制自身效用的裂缝,使得科研人员无法测量这些材料的基本特性。

  此次制成的无缺陷薄膜的导电率约为传统方法制成的有裂缝薄膜的180倍。科学家称,这一制造方法还能应用于硅表面,制成30纳米宽的薄膜。其诀窍在于使薄膜结构变得均匀,紧贴在二氧化硅基座上。这能通过在纳米晶体层沉积于硅表面之前,将稀薄的聚合物层覆盖在表面上实现。据推测,纳米晶体表面上细小的有机分子亦能帮助它们与聚合物层相结合。

  在研究的最初阶段,科研人员生产出的纳米薄膜能发出不可见的红外光。但基于这种系统的工作十分单调,因为每次微调都需要进行耗时颇长的电子显微镜检查。而当成功获取能发出可见光的半导体纳米晶体图案时,意味着研究团队能够大幅加快开发新技术的速度。即使纳米薄膜低于光学显微镜的分辨率限制,纳米晶体亦可作为一个光源,使它们变得可见。

  研究人员表示,这种纳米晶体薄膜可以得到多种应用。因为它们不仅能发光,也能吸收多种颜色的光。这有助于形成高分辨率显示器屏幕上的发光像素,或是制成新类型的高效、广谱太阳能电池。同时,这种材料还可被用于开发针对少量特定生物分子的高敏度探测器,例如作为毒素筛选系统或是医药检测设备等。另外,这种技术的成功也开启了有关电子在纳米晶体薄膜内如何移动的新研究,此前这一直被视为学界的一大难题。(记者张巍巍)

  总编辑圈点

  想评估一种薄膜材料的性能,就看它的结构和缺陷。在制备中任何缺陷的出现,都可迅速演变成为后续产品的灾难——譬如文中提到的高分辨率显示器,薄膜裂缝很可能会使一台昂贵设备完全失效。因此对研发者来说,没什么能比攀升到更高质量标准还重要了。而像麻理开发的这种纳米结构材料,质量标准很大程度上取决于生长和制备工艺,在衬底材料上生长半导体薄膜的手法很常见,但做到无缺陷,才真正显功力。