央视网|中国网络电视台|网站地图
客服设为首页
登录

更多 精彩视频排行

网友评分最高


首播

重播

  哈佛大学研究人员将一本大约有5.34万个单词的书籍编码进不到亿万分之一克的DNA微芯片,然后成功利用 DNA 测序来阅读这本书。

这是迄今为止人类使用DNA遗传物质储存数据量最大的一次实验。

  “今后,拇指大小的设备就能存下整个互联网的信息。”该项目的首席研究员、哈佛大学遗传学家乔治·丘奇说。

  要说信息存储,没有一样比得过 DNA。人们很早就觊觎我们自身的基因代码存储数据的潜力,但如何将信息编码进 DNA 遗传物质再如何解读出来,一直是个难题。

  近日,哈佛大学维斯生物工程研究所的一群研究人员尝试将一本大约有 5.34 万个单词的书籍编码到不到一沙克(亿万分之一克)的DNA微芯片中,连同文字一起的还有11张图片和一段Java程序。这是迄今为止人类使用DNA遗传物质储存数据量最大的一次实验。“今后,拇指大小的设备就能存下整个互联网的信息。”该项目首席研究员、哈佛大学遗传学家乔治·丘奇(George Church)说,被编码进 DNA 的书正是他的大作《再生:合成生物学将如何改变未来的自然和自己》。

  这项实验被刊登在《科学》期刊上。但因编码存储和读取过程太过昂贵,DNA 存储离商业化还有一段距离。“随着DNA合成、测序价格的不断下降,这或许将成为长期存储数据的一种选择。”哈佛大学生物学教授可苏里(Sriram Kosuri)说。这一实验,或许为解决未来社会爆炸性的大数据存储指明了方向。

  从二进制到碱基对编码

  DNA 是生物数据库,它的主要功能就是存储包含各种指令的生物信息。DNA 有 G(鸟嘌呤)、T(胸腺嘧啶)、A(腺嘌呤)、C(胞嘧啶)四种碱基,共同构成了相互缠绕的双链阶梯状的螺旋结构。通过这四种碱基不同顺序的编码,存储了生物所有的遗传信息。

  现代计算机技术奠基者之一冯·诺依曼曾在 1948 年提出“自动复制机器”的设想:一个能够自我繁殖的系统,不仅能够构建某个组成元素,结构和自己一致的下一代,也能够把对自身的描述传递给下一代,如此往复。后来随着生物遗传的奥妙被发现,人们意识到,DNA 双螺旋结构正是冯·诺依曼描述的自动复制机器。

  DNA 里的四种碱基,两两互补成对。一个最短的 DNA 分子也有 4000 个碱基对,可能的排列方式就有 44000 种。碱基对排列顺序千变万化,从而能够存储大量的遗传信息。

  向活体 DNA 里写入数据,有诸多困难,细胞会死亡、分裂、变异,数据内容就会发生改变。

  在本文开头提到的那项实验中,科学家们没有采用活细胞的基因组,而是采用了人工合成的 DNA 片段。他们用很多短的 DNA 序列而非长 DNA 序列来编码数据,这类似于硬盘写入的原理,在硬盘中,数据是被写入称为扇区的小硬盘块,这样能够降低写入和读取数据的困难和成本。科学家们将这种片段用喷墨打印机嵌入到微阵列芯片表面。接着,他们把计划写入 DNA 的书里包含的信息:图片、文字、程序转化为 HTML 格式的文件,并将这些文件编译为由 0 和 1 组成的电脑能够读懂的 2 进制数据。然后,他们将 2 进制数据转为四种碱基,把0转为 A 或 C,把 1 转成 G 或者 T,并建立 DNA 链来维系这些编码的顺序和位置。每一个 DNA 片段还包含一个数字“条码”,记录它在原始文件中的位置,每个片段被合成多个拷贝以便有助于校正错误。编码完成后,这些芯片会在 4 摄氏度下保持三个月。

  测序就是读取数据的过程:启用DNA测序装置,将所有 DNA 片断中的编码按照标记顺序排列,再还原成 2 进制格式的数据。每个 DNA 片断的每一个拷贝被测序高达 3000 次以便校对。利用这种方式,他们将 5.27 兆数据中的错误降低到只有 12 个。这种尺寸微小的存储设备,存储密度远远高于 DVD、硬盘等介质,效果也毫不逊色。

  丘奇认为,和其他生物存储介质相比,DNA 存储比较可靠,在室温下也是稳定的,你甚至可以将它放在任何地方,几十万年后,它还在那里。现在的问题是,DNA 存储设备的访问速度很慢,存取和读取都很花费时间,如何覆盖和重写数据也是个问题。好消息是,随着测序技术的进展,DNA 编码和测序的成本会逐年下降,离商业化应用也就不远了。

  生物硬盘

  在人们把目光投向生物存储之前,占据存储市场主流的就是现在的存储介质,主要是磁盘、光盘。1949 年,电脑的磁存储设备问世,意味着信息可以随时存取和控制,这个设备改变了整个行业。一块铝制圆片,涂上磁性介质,因为磁有正负级,在电磁效应作用下,可以方便地存储和表达 010101 的二进制信息。无论磁盘还是硬盘,基本原理几乎一样。经过 60 多年的发展,磁存储行业已经可以在 3.5 英寸大小的驱动上存储 3TB 数据。

  另一种主流的光存储也在不断挑战存储极限。光盘将数字编码的视频和音频储存在光盘表面的凹槽中。激光读取这些凹槽的背面,就能播放储存的电影节目。光盘包含的数据越多,凹槽就必须越小、越紧凑。与之相对,读取激光的精度也必须越来越高。普通 DVD 使用的是红色激光在凹槽里记录信息,蓝色激光波长比红色激光长,较小的光束聚焦更准确。此外,蓝光光盘将轨距从 0.74 微米缩小到 0.32 微米。更小的凹槽,更小的光束以及更短的轨距结合,蓝光的问世正是顺应了大数据存储的潮流。现在单层蓝光光盘能够保存 25GB 以上的信息,是 DVD 可储存信息量的5倍。还有人在研发用紫外线做激光,其波长比蓝光更短,如果成功,一张光盘可以保存 500GB 的数据。

  这些存储方式有一个共同的缺点,磁片表面也好,光盘表面也好,都是单层的平铺式地记录和保存信息,哪怕磁盘每一层可以叠加,也和 DNA 封闭的双螺旋立体结构无法媲美,记录的数据量相去甚远。一克 DNA 即能储存上千亿个千兆字节,相当于 1000 亿张 DVD 光盘的内容。

  随着摩尔定律的升级,人们已经逐步接近传统电子制造的极限。人们早就开始在自然中寻找解决问题的灵感。早在 2007 年,就有日本科学家研究利用趋磁细菌制造出和传统计算机原件类似的东西,代替磁盘存贮数据。今年初,又爆出德国和台湾的一个联合科研团队以三文鱼的 DNA 作为基础,制造出单次写入多次读取的存储器。不过,那个 DNA 存储装置只能储存数据至多 30 小时,且它并没有利用 DNA 的结构进行编码。

  这是个数据爆炸的时代,无处不在的摄像头,互联网上成倍增长的信息,大量手持设备的照片、视频??如果生物存储技术足够成熟,人们可以记录所有想记录的一切,而不必担心家里没有地方放硬盘。市政部门也不必每隔一段时间就清理街道摄像头的视频记录,释放存储空间。

  微流体和芯片实验室的发展,让 DNA 合成和测序变成一项日常工作。以前,要解码一个人类基因得花几年,现在用微流体芯片技术只要不到一天。如果用于长期存储,这样的速度还是可以接受的。随着 DNA 读写技术的商业化,未来的 DNA 硬盘,或许会和今天的硬盘、光碟一样普遍。